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Abstract Wire-moving robots are mechanical systems that
can maintain their balance and move on tightropes. Their
name comes from the manner in which tightrope walkers
maintain their balance by rolling or moving a pole from left
to right. In order to investigate the internal laws of these
systems and to apply a mechanism of self-balance control
to them, a new mechanical structure for wire-moving
robots is presented here. This structure consists of a
rotational pole and a translational pole coupled with each
other in a parallelogram. The robot is an underactuated
system. A dynamic model of the robot is established here
based on the Lagrange method, and the controller of the
system was designed using a partial feedback linearization
control algorithm. Finally, the efficiency of the algorithm
and the stabilization were verified by computer simulation
and experimentation using a prototype.

Keywords Wire-moving Robot, Balancing Pole, Dynamic
Model, Self-balance

1. Introduction

High-wire acts have a long history. Even for a skilled
acrobat it is difficult to maintain balance on a wire using
only a long pole, and it is also dangerous.Many researchers
have tried to realize this kind of self-balance control using
mechanical devices. In 2005, a mobile robot suspended

on wire was designed by Rogério Sales G and João Carlos
Mendes C [1], as shown in Figure 1. The robot has four legs
that move like a human climbing beneath a single wire.
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Wire

Figure 1. A four-legged wire-moving robot

A two-wheeled wire-moving robot was also designed
based on the gyroscopic effect [2]. In one study, a robot
suspended on overhead ground wires was designed with
a controller capable of obstacle-navigation control [3]. Its
localization method and database were based on two
laser sensors.Almost all wire-moving robots are designed
so that most of the robot’s mass is beneath the wire.
Producing a wire-moving robot whose bulk remains above
the wire is a new challenge.
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Many wire-moving robots have been designed for the
inspection of power transmission lines [3–9] and this kind
of robot is used widely. The Expliner and LineScout robots
are two examples.

The Expliner robot was designed by the Kansai Electric
Power Company, HiBot, and the Tokyo Institute of
Technology. It is an inspection robot used on ultra-high
voltage power lines [8]. The main part of the Expliner
robot is located below the power lines and hangs below
two parallel wires by eight wheels, four on each wire, as
shown in Figure 2. The Expliner robot can inspect the
wires and repair failed or damaged areas. The Expliner
robot can even cross some of the barriers on the wires.

Figure 2. The Expliner robot

The LineScout robot was designed by the Hydro Québec
Research Institute. It is the best inspection robot for
ultra-high voltage power lines currently available [9], as
shown in Figure 3. Like the Expliner robot, the bulk of
the LineScout robot is also below the wires. However, the
LineScout robot can hang below only one wire. This allows
the LineScout robot to cross most kinds of fittings on the
wires. Its mechanical arm can perform complex actions,
like replacing vibration dampers on the wires.

Figure 3. The LineScout robot

The difference between the wire-moving robot in this
paper and the two robots (Expliner and LineScout) above
is that all parts of our wire-moving robot are located

above the wire. The robot moves on only one wire and
maintains its balance by rotating the rotational pole and
moving the translational pole. This wire-moving robot
was modelled on the movements of a tightrope walker.
This robot can be used to explore the theory underlying the
mechanisms by which robots maintain their balance while
travelling on one wire. Studies of this kind can be used to
design tightrope-moving robots for entertainment and for
applications in which a robot must be able to manoeuvre
on top of a wire instead of beneath it.

Overall, although all the robots can move steadily across
thick wires, they differ from each other considerably. Most
types of these robots maintain their balance more easily
because their centres of mass are below the wire.

One previous study presents the dynamic model and
controller design of a wire-moving robot capable of
maintaining its balance through control of a rotational pole
[10]. A computer simulation was used to verify the results
of the theoretical analysis. These were the early results
of our research. However, the paper does not discuss the
effect of the translational pole for the robot self-balancing
control. Neither does it describe the production of a
real prototype or experimental environment. This is the
primary consideration of the present work.

The structure and design of a new wire-moving robot are
described in this article. The robot was controlled using
both a rotational pole and a translational pole. These poles
were coupled using a parallelogram structure, which was
intended to simulate the control exerted by a human arm
when driving the balancing pole. To distinguish between
these two kinds of robot, the robot with two poles is here
called the rotational and translational pole (RTP) robot and
the other is called the rotational pole (RP) robot. The RP
robot was first presented in a previous study [10].

The dynamic model of the system was established using
the Lagrange method [11], and the controller was designed
using the partial feedback linearization control algorithm
[12]. The validity and the stabilization were confirmed by
the computer simulation and by experiments based on the
real prototype.

2. Mechanical design

The purpose of the wire-moving robot was to investigate
the internal laws by which humans maintain their balance
while walking on a high-wire and to apply this type
of self-balance control to a mechanical system. In this
section, the mechanical structure of the wire-moving robot
is described.

The wire-moving robot is a mechanical system that can
maintain its balance and move on tightropes. The
wire-moving robot was designed using some of the same
theories that underlie the motion of acrobats as they
maintain their balance on a tightrope. In a high-wire
performance, the acrobat holds a long pole. When the
acrobat’s centre of mass (COM) moves, the acrobat rotates
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the long pole in the direction of the COM. The COM is
affected by the counter-torque of rotating the pole. The
acrobat then inclines his or her body in the direction
opposite to the rotation of the pole. This causes the COM
to return to the equilibrium position. The mechanical
structure of the wire-moving robot is shown in Figure
4. The rotational pole in the front portion of the robot
serves the same function as the long pole in the acrobat’s
hand, and the motor fixed to the rotational pole acts as the
acrobat’s wrist. The translational pole, which is behind the
rotational pole, serves as the acrobat’s body. When the
COM of the robot moves, the robot rotates the rotational
pole in the direction of the COM to shift it. At the same
time, the small gear that is fixed with the rotational pole
rotates with the rotational pole and turns the two large
gears that are fixed to the hinges on the translational pole.
In this way, the translational pole moves horizontally to
the opposite side of the rotational pole and the COM
returns to the equilibrium position. Because acrobats only
need to incline their bodies by a small angle to move their
COMs back to the equilibrium position, the gear fixed to
the rotational pole is smaller than the gears fixed to the
short poles that control the angle of the translational pole.
There are two wheels set along a single line on the robot’s
chassis. The wheel under the robot serves as the acrobat’s
feet and is used to move the robot forward.

4.png 4.png

Figure 4. Conceptual design of the RTP robot

The translational pole is fixed to the two bushings. The
two bushings are connected to the two parallel short poles
by two hinges, one per pole. The two short poles are fixed
to the two large gears, one to each. When the small gear
turns, the two large gears are also turned by the small
gear and the two short poles. Then the translational pole
moves horizontally. In this way, a parallelogram structure
is formed by the translational pole and the two short poles.

A simple depiction of the parallelogram structure is given
in Figure 5. If link AD and link BC rotate in the same
direction, the centre of mass of link CD will move away
from the original position and reach a new equilibrium
position.

D C

A B

O

Figure 5. Parallelogram structure

Incorporating both observations of human tightrope
walkers and studies of mechanical structures, the
wire-moving robot was designed as a two-wheeled
mechanical system, as shown in Figure 6.

One of the two wheels under the robot is driven by a small
DC motor to make the robot move forward. The rotational
pole is also driven by a DC motor. The translational pole
can move horizontally when the large DC motor rotates
the rotational pole.

Translational pole

Gears(1:2.15) Short poles

DC motor

DC motor

Rotational pole

Wheels

Synchronous belt

Retarder(1:24)

Figure 6. Assembly of the RTP robot

3. Dynamic model

In this section, the dynamic model of the wire-moving
robot, as shown in Figure 7, is described. It was developed
using the Lagrange method.

Here, p1 represents the integrated COM of the robot’s
body and the rotational pole, p2 represents the COM of
the rotational pole and p3 represents the COM of the
translational pole.

The reference coordinate system oxyz is established with
the origin at one end of the rope, axis x passing through
the rope, and axis z perpendicular to the ground. The
local coordinate system o1y1x1z1 is attached to the robot’s
body with the origin o1 located at the point where the rope
crosses the line passing through p1 and is perpendicular
to the ground. Axis x passes through the rope and axis z
is parallel to the plumb line. The local coordinate system
o2x2y2z2 is attached to the rotational pole with the origin
o2 located at p2. The local coordinate system o3x3y3z3 is
attached to the translational pole with its origin o3 located
at p3. α is the relative angle between the coordinate
systems o1y1x1z1 and oxyz, and β is the relative angle
between the coordinate systems and o1y1x1z1. α and β
denote the corresponding angle velocity values.
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Figure 7. Wire-moving RTP robot with the definition of the
coordinate systems

In order to build the dynamic model based on the
Lagrange theorem, it was assumed that the rope was tight
so as to never swing while people were walking on it.

J1 served as the moment of inertia of the robot body
around axis o1x1. J2 was the moment of inertia of the
rotational pole around axis o2x2, J3 was the moment of
inertia of the translational pole. l2 was the length of the
rotational pole, d1 was the distance from point c to the
rope. d2 was the distance from point c2 to the rope. l3 was
the length of the translational pole. d3 was the distance
from the rotation centre A or B of the parallelogram
structure to the rotational pole. d4 was the length of the
connecting link of the parallelogram structure. d5 was the
distance between the translational pole and the rope, m1
was the mass of the robot body, m2 was the mass of the
rotational pole, m3 was the mass of the translational pole,
and g was the acceleration of gravity.

The robot moves around the rope with the angular velocity
α̇, so the rotational pole does as well. At the same time,
the rotational pole is driven by a motor with the angular
velocity β̇. Therefore its total angular velocity is d2α̇ and
its translational velocity is α̇ + β̇. The angular velocity of
the translational pole is α̇ and its translational velocity is
d5α̇, where d5 =

√
M and the following is true:

M = [d2 + d3 + d4 cos(kβ)]2 + [sin(kβ)d4]
2 (1)

 v

2d

3d
5d

3z

3y

3x
zv

4d yv

B

CD

A

Figure 8. Analysis of the parallelogram structure

As shown in Figure 8, as the rotational pole moved with
the angular velocity of β̇, the angle θ of the connecting link
of the parallelogram turned as follows:

θ = kβ. (2)

In which, k denotes the gear ratio. Then the linear velocity
of the translational pole is as shown below:

vo = d4 θ̇. (3)

The components of the linear velocity along the axis y3 and
axis z3 are as follows:

vy = vo cos θ (4)

vz = vo sin θ (5)

The actual translational speed of the translational pole is
as follows:

v =
√
(d5α̇ − vy)2 + v2

z (6)

Then let K1 be the kinetic energy of the robot body, the
expression is shown as follows:

K1 =
1
2

J1α̇2 (7)

Let K2 be the kinetic energy of the rotational pole, and the
expression is as follows:

K2 =
1
2

J2(α̇ + β̇)2 +
1
2

m2(d2α̇)2 (8)

The kinetic energy of the translational pole is as follows:

K3 =
1
2

J3α̇2 +
1
2

m3v2 (9)

By adding the kinetic energy values together, the total
kinetic energy of the system can be determined as follows:

K = K1 + K2 + K3 (10)

At the initial position of the system, the robot can remain
still on the rope. Take the horizontal plane of the mass
centre c as the zero potential energy surface. Then the
potential energy of the system can be obtained as follows:

P = −(m1 + m2)gd2(1 − cos α) + m3g(d5 − d1) (11)

By introducing the Lagrange operator, the following can
be found:

L =
1
2

J1α̇2 +
1
2

J2(α̇ + β̇)2 +
1
2

m2l2
2 α̇2 +

1
2

J3α̇2 +
1
2

m3v2

+ (m1 + m2)gd2(1 − cos α)− m3g(d5 − d1)
(12)

Substituting (12) into
d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi (i = 1, 2),

produces a dynamic model of the system. The equation
is expressed as follows:

A(q)q̈ + B(q, q̇)q̇ + C(q) = τ (13)

Int J Adv Robot Syst, 2014, 11:78 | doi: 10.5772/586004
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In which q =

[
q1
q2

]
=

[
α
β

]
, A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
,

C =

[
c1
c2

]
, τ =

[
0
τ

]
. The elements aij, bij and cij(i, j = 1, 2)

are functions of α and β. τ refers to the control torque of
the motor. There are two generalized coordinates in this
equation but only one generalized force. The system is
here shown to be underactuated. The expressions of the
matrix are as follows:

a11 = J1 + J2 + J3 + m2d2
2 + m3 M

a12 = J2 − m3kd4
√

M cos(kβ),

a21 = J2 − m3d4k
√

M cos(kβ),

a22 = J2 + m3k2d2
4, b11 = 2m3kd4(d2 + d3) sin(kβ)β̇,

b12 =
[
m3k2d4

√
M sin(kβ)+

1√
M

m3k2d1
4(d2 + d3) sin(kβ) cos(kβ)

]
β̇

b21 = m3kd4(d2 + d3) sin(kβ)α̇, b22 = 0,

c1 = −(m1 + m2)gd2 sin q1,

c2 = − 1√
M

m3gkd4(d2 + d3) sin(kβ).

4. Design of the controller

According to the first equation of (13), the new equation of
β̈ is expressed as follows:

β̈ = − 1
a12

(a11α̈ + b11α̇ + b12 β̇ + c1). (14)

If (14) is entered into the second version of (13), then the
equation is as follows:

(
a21 −

a11a22
a12

)
α̈ +

(
b21 −

a22b11
a12

)
α̇

+

(
b22 −

a22b12
a12

)
β̇ + c2 −

a22
a12

c1 = τ

(15)

Using partial feedback linearization methods, and
introducing the new controller V produces the following:

τ =

(
a21 −

a11a22
a12

)
V +

(
b21 −

a22b11
a12

)
α̇

+

(
b22 −

a22b12
a12

)
β̇ + c2 −

a22
a12

c1

(16)

The new expression of the dynamic model can be
expressed as follows:




α̈ = V

β̈ = − 1
a12

(a11α̈ + b11α̇ + b12 β̇ + c1)
(17)

The expected position of the robot is as follows:

yd =
[
αd βd] = [

0 0
]T (18)

Here, αd indicates the expectation position of the roll angle,
and βd indicates the expected position of the rotational
pole. Here, αd and βd are always zero.

The controller was designed as follows:

V =α̈d + k11(α
d − α) + k12(α̇

d − α̇)

+ k21(βd − β) + k22(β̇d − β̇)
(19)

Here, k11, k12, k21 and k22 are the four adjusting elements.

The errors serve as four new system status variables, x1 =
α − αd, x2 = α̇ − α̇d, x3 = β − βd, x4 = β̇ − β̇d. Then the
affine equations of this system can be obtained.

{
ẋ = f (x) + g(x)V
y = Hx

(20)

Here, x=




x1
x2
x3
x4


, f (x)=




x2
−k11x1 − k12x2 − k21x3 − k22x4

x4

− 1
a12

(b11x2 + b12x4 + c1)


,

g(x) =




0
0
0

− a11
a12


, y =

[
x1
x3

]
, H =

[
1 0 0 0
0 0 1 0

]

The structure of the controller is shown in Figure 9.
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Figure 9. Structure of the controller

5. Stability of the system

At the equilibrium point of the system, the Jacobian matrix
of (20) is as follows:

∂ f (x)
∂x

∣∣∣∣
x=0

=




0 1 0 0
−k11 −k12 −k21 −k22

0 0 0 1
w 0 0 0


 (21)

Here,

w =
(m1 + m2)gd2

J2 − m3kd4(d2 + d3 + d4)
. (22)

Accordingly, the characteristic equation of the Jacobian
matrix (21) is obtained as follows:

s4 + k12s3 + k11s2 + wk22s + wk21 = 0 (23)

Based on the Roth Criterion, some necessary and sufficient
conditions of the stability of the system are obtained as
follows: 



k12, k11, k22, k21 > 0

k12k11 > wk22

k12k11k22 > k2
12k21 + wk2

22

(24)
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If the appropriate values of k11, k12, k21 and k22 were taken,
the expression above is satisfied.

6. Computer simulation

6.1 Establishment of the virtual prototype

The virtual prototype is designed in SolidWorks, and
the SolidWorks model was imported into Adams and
analysed. As shown in Figure 10, all of the robot parts
were constrained by each other. Based on the assumption
given above, the wire was designed to act as a rigid body,
and it was fixed to the ground.

Figure 10. Virtual prototype of the RTP robot

The parameters of the virtual prototype are given in the
following table.

6.2 Process and results of the simulation of the motion of the
RTP robot

Control torque was found by substituting the parameters
in Table 1 into the control equations above. The original
function is too complex to compute immediately. It must
be simplified and written as follows:

TIME ∗ [0.092869 ∗ (1625∗α+361∗α̇+34∗β+50∗β̇)
+6.03791 ∗ sin(α)− 0.0985166 ∗ sin(0.775∗β)
+0.00234871∗α̇2∗sin(0.775∗β)
+0.00478522∗α̇∗β̇∗sin(0.775∗β)
−0.00287546∗β̇2∗sin(0.775∗β)]

(25)

The roll angle of the RTP robot body was set to 10
degrees to simulate an external disturbance, such as high
winds. The relative angle between the rotational pole
and the robot body was 0 degrees. The simulation took
10 seconds, at 0.01 second increments. By adjusting the
four parameters, ideal results were found. The parameters
were as follows:

k11 = 1625, k12 = 361, k21 = 34, k22 = 50

This allowed access to the roots of equation 22, which were
as follows:

s1 = −356.4531, s2 = −3.5881

s3 = −0.4794 + 0.7593i, s4 = −0.4794 − 0.7593i.

All the real parts of the roots were distributed in the left
part of the S plane. The system was stable. The results of
the simulation are shown in Figure 11 and Figure 12.

Object Term Value (RTP)
Mass of the robot body m1(kg) 2.299

Inertia of the robot body
relative to axis o1x1

J1(kgm2) 0.0227

Mass of the rotational pole m2(kg) 1.654
Inertia of the rotational

pole relative to axis o2x2
J2(kgm2) 0.19848

Length of the rotational pole l2(m) 1.2
Mass of the translational pole m3(kg) 0.306

Inertia of the translational
pole relative to axis o3x3

J3(kgm2) 0.006375

Length of the translational pole l3(m) 0.5
Distance between the rotational

pole and the p1
d1(m) 0.114469

Distance between p2 and the wire d2(m) 0.153
Distance between the rotational
pole and the centre of the gear d3(m) 0.025

Length of the vertical
border of the parallelogram d4(m) 0.05564

Gear ratio k 31/40
Acceleration of gravity g(m/s2) 9.8

Table 1. Virtual prototype parameters of the RTP robot
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Figure 11. Roll angle and relative rotation of the rotational pole
of the RTP robot
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Figure 12. Motor control torque of the RTP robot
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In Figure 11, the red solid line represents the roll angle
of the robot. The blue dotted line represents the relative
rotation of the rotational pole. All the peaks in the solid
line are opposite to those on the dotted line. As the
rotational speed of the rotational pole increased, the roll
angle of the RTP robot decreased. Three seconds later, the
robot had almost reached equilibrium. At the same time,
the rotational pole and the translational pole continued to
move at low speed. This had little influence on the roll
angle of the robot body. Four seconds later, the roll angle
of the robot body had decreased from the initial angle of
10◦ to 0◦, and the relative angle between the rotational
pole and the robot body had decreased from the maximum
angle of 80◦ to 0◦. The RTP robot system became stable.

In Figure 12, the red solid line represents the control torque
of the DC motor. This curve has the same shape as
the roll angle in Figure 11. This means that the motor
rotates in the same direction as the movement of the
RTP robot. It takes only four seconds for the curve to
converge during the control process. This shows that the
controller is highly effective. Human performers perform
similar actions to maintain their balance while walking on
a wire. In conclusion, the simulation result demonstrated
the internal law of tightrope walking.

6.3 Comparison of the RTP and RP robots

The establishment of the controller design and the
simulation model of the RP robot can be seen in a previous
study [10]. The simulation of the RP robot presented in a
previous study is here compared to the simulation of the
RTP robot[10].

Figure 5 of the previous study is here compared to Figure
11. The settling time of the response of RP robot’s roll angle
was about 3s. However the RTP robot took only about
1.5s. The two curves of the responses of the roll angle
show that the RTP robot has a considerable advantage over
the RP robot with respect to overshoot. Figure 6 of the
previous study is compared to Figure 12 of the current
study. The motor torque curve of the RTP robot also
showed a shorter settling time and less overshoot. In this
way, the response of the RTP robot was found to converge
faster and show less vibration frequency than the response
of the RP robot under the same initial conditions. Overall,
the performance index of the control system had increased
significantly after the addition of the translational pole to
the robot.

7. The experiments

7.1 Physical prototype

The physical prototypes of the RTP and RP robot are
shown in Figure 13. The TMS320F28335 DSP controller
serves as the core processor of the control systems. The
whole system is shown in the block diagram as shown in
Figures 14 and 15.

Figure 15 shows the physical devices of the system and
how they are connected to each other.
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Figure 14. Block diagram of the system

7.2 Rigid rail experiments

The parameters of the physical prototype were
recalculated, producing the values of the mechanical
system. They are shown in Table 2. The experiment was
carried out on a guide rail.
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7.2.1. RTP robot on a rigid rail

According to Table 2, the constant w which is described in
Eq. (22) can be calculated as 25.2238. The four parameters
were adjusted as follows.

k11 = 775, k12 = 110, k21 = 26, k22 = 32

Object Term RTP RP
Mass of the robot body m1(kg) 3.5 3.1533

Inertia of the robot body
relative to axis o1x1

J1(kgm2) 0.0346 0.6097

Mass of the
rotational pole m2(kg) 1.53 2.1141

Inertia of therotational
pole relative to axis o2x2

J2(kgm2) 0.302379 0.4178

Length of the
rotational pole l2(m) 1.54 1.54

Mass of the
translational pole m3(kg) 0.55 /

Inertia of thetranslational
pole relative to axis o3x3

J3(kgm2) 0.025098 /

Length of the
translational pole l3(m) 0.74 /

Distance between
the p1 and the wire d1(m) 0.122 0.16465

Distance between
p2 and the wire d2(m) 0.153 0.2416

Distance between the
rotational pole and

the gear centre
d3(m) 0.022 /

Length of the vertical
border of the parallelogram d4(m) 0.057 /

Gear ratio k 26/56 /
Gravity acceleration g/(m/s2) 9.8 9.8

Table 2. The physical parameters of the robots

Then the roots of equation 22 were recalculated as follows.
The system was found to be asymptotically stable.

s1 = −102.5164

s2 = −6.4224

s3 = −0.5306 + 0.8453i
s4 = −0.5306 − 0.8453i

The results are shown in Figures 16 and 17.

The robot was set to its equilibrium position at the
beginning. Then a horizontal interference force was
exerted upon the robot between the third and fourth
seconds. Then the roll angle increased to 10◦. The
controller quickly took effect, and the system began to
converge. Two seconds later, the roll angle decreased to
0◦. Finally, the robot oscillated near equilibrium within
a range of ±3◦, as in the simulation. This showed the
control algorithm to be effective. By observing Figure 17,
the curve of the torque was found to be similar to the roll
angle in Figure 16 and it was concluded that the system is
dynamically stable.
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Figure 16. RTP robot on the rigid rail
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Figure 17. DC control torque of the RTP robot
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Figure 18. The roll angle of the RTP robot under interference

The following experiment, shown in Figure 18, was
performed to assess the stability of the robot in situations
involving dynamic interference. Interference was exerted
upon the robot three times in different directions over the
course of 18s. The robot remained stable every time and
never fell off of the guide rail.

7.2.2. RP robot on a rigid rail

The physical prototype was designed for a simulation and
is shown in Figure 13(b). The core processor of the robot’s
measurement and control system is DSP28335. The system
can be used to determine the control torque using data
obtained from a sensor system which are sent to the motor
drive. Then the motor would rotate the rotational pole to
maintain its balance.

As in Table 2, the four parameters were adjusted using the
robot’s data. This produced the following four parameters:

k1p = 260, k1d = 91, k2p = 8.5, k2d = 14.8

The solutions to the system’s characteristic equations are
presented as follows. The system is asymptotically stable.

s1 = −164.6964

s2 = −2.7535

s3 = −0.275 + 0.5703i
s4 = −0.275 − 0.5703i

The experiment results are shown in Figures 19 and 20.

As shown in Figure 19, a horizontal interference force
was exerted upon the robot at the equilibrium position.
This caused a depression in the red curve. At the same
time, the rotational pole rotated toward the direction in
which the robot had inclined, causing the robot to return
to the equilibrium position. Then overshoot increased
the roll angle of the robot to nearly 10◦. The controller
quickly rotated the rotational pole to nearly 55◦, moving
the COM of the robot to the equilibrium position. In the
end, the robot reached the dynamic stable state near the
equilibrium position. Motor output torque over time is
shown in Figure 20.
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Figure 19. The roll angle of the RTP robot under interference
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Figure 20. Motor output torque of the RP robot on the rigid rail

The robustness of the robot is shown in Figure 21.
Interference was imposed upon the system 2s into the
experiment. The roll angle of the robot converged to
less than 2◦4s into the experiment. Interference was
reimposed at 8s and the robot again returned to the
equilibrium position quickly. Then the amplitude of the
third disturbance was increased, which increased the roll
angle of the robot to 8◦. The controller worked effectively
and the robot regained its balance after 3s. After several
rounds of interference of different amplitudes, the robot
maintained its balance and did not fall off the rigid pole.
This showed the controller to be able to foster stability.

7.2.3. Comparison of RTP and RP robots on a rigid rail

The actual experimental results are shown in Figures 16
and 19. They indicate that the roll angle of the RP robot
ranged from about −3 ∼ 23◦. The stability of the RP robot
was about −3 ∼ 3◦. However, the roll angle of the RTP
robot was about −3 ∼ 9◦, and the stability of the RTP robot
was about −3 ∼ 3◦. The largest angle of the rotational pole
of the RP robot was nearly 50◦. However, the largest angle
of the rotational pole of the RTP robot was only 35◦. This
shows that the RTP robot can be balanced by controlling
the rotational pole with a relatively small angle. Figures 18
and 21 show that the range of the output torque of the RTP
robot is smaller than the range of RP robot when both are
subject to interference.
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Figure 21. Roll angle of the RP robot on the rigid rail with
disturbance

An attempt was made to test the RP robot on a flexible
wire, but the robot showed a negligible ability to maintain
its balance. The RP robot was rebuilt as an RTP robot for
the flexible wire experiments.

7.3 RTP robot on a flexible wire

The rigid rail was replaced with a flexible wire. The
experimental platform is shown in Figure 22.

Figure 22. Flexible wire experiment platform

Because the wire is flexible, the RTP robot cannot be set
at the equilibrium position statically. It can only be set
at a position near its equilibrium. An experiment without
any interference is shown in Figure 23. The RTP robot was
found to remain dynamically stable on the wire and its roll
angle was very small, varying within a range of ±3◦.
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Figure 23. RTP robot on the wire
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Figure 24. Control torque of the motor for the RTP robot on the
wire

As shown in Figure 24, the control torque varied within
the range of ±5Nm, excepting one large fluctuation at
14s. However, the controller then took effect quickly and
the RTP robot returned to the equilibrium position. In
this way, the RTP robot was found to perform well on
the wire when no interference was deliberately added.
Another experiment was performed in order to assess the
performance of the RTP robot under conditions involving
human interference. It is shown in Figures 25 and 26.
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Figure 25. RTP robot on the wire with interference
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Figure 26. Control torque of the motor for the RTP robot on the
wire with interference
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Figure 27. Moving on the wire when subject to human
interference

Five seconds into the experiment, the RTP robot was
pushed. Its roll angle increased to about 6◦. Within about

3s, the robot returned to its initial position. The curve was
similar to the ones in Figures 16 and 26. This showed the
robot to be capable of recovering from interference.

Disturbing the RTP robot when it was moving and
balancing it on the flexible wire returned it to a state of
equilibrium after a moment of attitude adjustment. This
showed that the RTP robot is robust.

Figure 27 shows a group of screenshots from the RTP robot
experiment. The RTP robot moved on the wire safely from
one end to the other - this is the ideal performance of our
RTP robot.

8. Conclusion

The present article discusses a wire-moving robot and
the nonlinear controller that was established for use with
it. This robot showed stable equilibrium control on a
rigid rail and flexible wire. Its two-wheeled structure is
an imitation of human feet and it was found to remain
stability in the direction of travel. Its stability left-to-right
was controlled by balancing poles. As in actual tightrope
walking, the pole has two different movements, rotation
and translation. However, it is difficult to imitate the
flexible arm of a human using mechanical devices. Here,
a parallelogram structure was used instead. In this device,
the translation of the short pole was coupled with that of
the rotational pole. Under these conditions, though the
rotational pole does the bulk of the balance control, the
movement of the centre of mass can be affected by either
pole.

A computer simulation was performed on the rigid rail,
and the same experiments were carried out using robot
prototypes. Both robots showed the nonlinear controller
designed using the partial feedback linearization control
method to be effective. The results of these experiments
were consistent with those of the simulations, as were
those of the anti-interference experiment. In the
experiments involving a flexible wire, if the wire shook
heavily, the RP robot would fall off. This is also why so
many people cannot walk tightropes. While the RTP robot
succeeded in moving on the flexible wire. In conclusion,
a wire-moving robot capable of moving on a flexible wire
was designed, and an internal law of tightrope walking
was proposed.
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